Solving Equations Using Algebra Tiles

Name \qquad Date \qquad

Equation	Tile Model	Written Description of Procedure	Mathematical Procedure (Algorithm)
$x+2=3$			
$2 x-4=8$			
$2 x+3=x-5$			
$\square \square$	\square		

Solving Equations Using Algebra Tiles - Jigsaw Puzzle 1

Name \qquad Date \qquad

Equation	Tile Model	Written Description of Procedure	Mathematical Procedure (Algorithm)
$2 x=-8$			
		1. One negative x is equal to 5 . 2. Take the opposite of each side of the equation. 3. One x is equal to five negative units.	
			$\begin{aligned} 3 x & =2+x \\ \frac{-x}{2 x} & =2^{\underline{-x}} \\ \frac{\div 2}{x} & =\frac{\div 2}{1} \end{aligned}$

Solving Equations, Using Algebra Tiles - Jigsaw Puzzle 2

Name \qquad Date \qquad

Equation	Tile Model	Written Description of Procedure	Mathematical Procedure (Algorithm)
$2 x+1=5$			
		1. Three negative x s and two units are the same as 5 . 2. Subtract two units from each side of the equation. 3 Divide both sides of the equation into two equal groups. 4. Flip both sides of the equation to make them opposites. 5. One x is equal to one negative unit.	
			$\begin{aligned} 2 x-3 & =x+2 \\ \frac{-x}{x-3} & =\frac{-x}{2} \\ x^{\underline{+3}} & =\frac{+3}{5} \end{aligned}$

